The periodic table is the chemist’s playground—an icon of science that’s found on classroom walls around the world. Although it’s one of the most powerful conceptual tools in all of science, it didn’t spring forth all at once.

Long before the existence of atoms had been proven—that wasn’t until the 20th century, after all—there still were chemical researchers all over the world who were looking to find useful compounds. Some of these substances that they found seemed to be more fundamental than others. These “elements” could not be broken down into other substances by any normal physical means.

Ancient cultures knew of at least 10 different chemical elements. Most of these were found in their native state as metals, including copper, silver, gold, platinum, lead, mercury, and tin.
Ancient cultures knew of at least 10 different chemical elements. Most of these were found in their native state as metals, including copper, silver, gold, platinum, lead, mercury, and tin. There are also nonmetallic elements that occur in nature; carbon comes from charcoal and sulfur from volcanoes.
This is a transcript from the video series The Joy of Science. Watch it now, on Wondrium.
Then we come to the 12th through the 16th centuries—the period of alchemy—where various scholars learned to separate a few other elements by using intense fires. The new elements discovered during this period include arsenic, zinc, bismuth, and phosphorous.
Between 1735 and 1805, chemists devised new techniques to purify and characterize more than two dozen new elements. Many of the new elements were discovered by studying minerals through wet chemical analysis, where scientists dissolved and broke apart the minerals; or by blowpipe analysis, where you used an intensely hot flame to melt and fuse various parts of the minerals. The important elements nickel, cobalt, magnesium, chromium, molybdenum, tungsten, uranium were all discovered during this period. Also during this period was the first isolation of gaseous elements: Hydrogen, nitrogen, and oxygen.
Learn more about why scientific literacy so important for citizens in the modern world
Mendeleev Brings Order to the Elements

Order was given to the wide and growing range of chemical elements by the Russian chemist Dmitri Mendeleev. Many of his earliest publications relate to the chemical analysis of minerals. It was this work, along with his interest in teaching chemistry, that led him to search for systematics in the patterns and properties of the different chemical elements. When Mendeleev knew of 63 different chemical elements, he began working on his famous table in the 1860s.
It turns out that chemical elements have a whole number of measurable properties, and this provides the basis for grouping the elements in various rows and columns. You can measure the relative weights of elements by observing ratios of the weights when compounds are decomposed. When water is decomposed by electricity, for example, it produces two parts hydrogen to one part oxygen gas by volume, 1:8 by weight.
By measuring the decomposition of many different compounds, the relative weights of many different elements can be determined. If hydrogen has weight 1, for example, Mendeleev found that sodium has weight 23, calcium has weight 40, and barium has weight 137, for example. All the elements then can be arranged in sequence according to increasing weight.
Elements also displayed other systematic properties. During electrolysis, for example, a mineral or other compound is dissolved in acid. The two electrodes separate these elements. What was found was that a few elements—including oxygen, chlorine, and bromine—always went to the positive electrode. Metals were always deposited at that negative electrode. You can then collect the metals and determine their properties.

For example, if you take silver chloride and you dissolve it, the chlorine gas bubbles off the positive side; then, the silver metal is plated onto the negative anode. This is the principle for silver plating and other kinds of metal plating by electrical methods, which are called electroplating, in a general sense. It can be done using a battery and dissolved metals in the solution.
Learn more about how Ptolemy’s geocentric model of the solar system was an early application of the scientific method
Puzzling Patterns
It turns out that the amount of voltage required to initiate this process is also one of the periodic properties. As you go across certain sets of elements, you see there’s a systematic pattern. You need more voltage for some elements than others.
Long before Mendeleev’s work, chemists had recognized that some groups of elements show striking similarities and patterns.
Long before Mendeleev’s work, chemists had recognized that some groups of elements show striking similarities and patterns. This is true for their physical appearance, their chemical properties, and other sorts of behavior. Furthermore, for each of these groups of related elements, the physical and chemical properties seemed to somehow change systematically with their weight.

Let’s consider a few examples of these periodic properties. The elements lithium, sodium, potassium, and rubidium, for example, are all soft, silvery metals. They’re called alkaline metals and all react violently with halogens like chlorine.
Another group of elements is called alkaline earth metals. These include beryllium, magnesium, calcium, and barium. The relative weights of these four silvery metals are 9 to 24, to 40 to 88. That’s an odd sequence of numbers, but there seems to be some sort of similarity. It’s not an identical pattern, but there’s certainly something very close there. Mendeleev noticed that sort of thing as well.
Still, other elements, such as hydrogen, carbon, and sulfur, were more difficult to group in any systematic way. There didn’t seem to be any other elements that were exactly like those, so Mendeleev must have been puzzled when he filled this complete array of elements and tried to systematize them. Part of his success was his ability to focus on the most obvious patterns and then not worry about anomalies that seemed to creep in. This is an intuitive step in science: You have to know what details to ignore when you make your synthesis.
Learn more about pivotal figures in early-modern science
Leaving Room for the Unknown

Mendeleev forced the most unambiguous groups of similar elements into vertical columns. He also arranged his elements left-to-right and top-to-bottom by increasing weights. Thus, sodium was next to magnesium, potassium was next to calcium, and so forth.
He also left spaces for elements that appeared to be missing. For example, his table left room for unknown elements in positions two, 10, and 18. There were also obvious gaps at element 21 and element 32, elements that had not been described and yet would appear to be present if the table were complete.
Learn more about how Isaac Newton formed many of his major contributions
Scientists readily accepted the concept of the periodic table, not only because it systematized so much of what was known, but because it made very specific testable predictions about what was not known.
Common Questions About the Periodic Table
The Periodic Table, as of this post, holds 118 elements both natural and man-made.
The heaviest element on the Periodic Table in terms of atomic weight for a naturally found element is number 92, uranium. The heaviest man-made element is number 120, Ununoctium.
There is currently a hypothetical element on the Periodic Table. It is number 119 called, temporarily, Ununennium, until we have complete confirmation of its discovery. There are likely to be a huge number of elements we do not yet know of.
The hardest single element on the Periodic Table is currently carbon while in the shape of a diamond.