Dark Matter and the Earliest Stars

A Professor's Perspective on Current Events

Professor Sean Carroll Ph.D.
By Professor Sean Carroll Ph.D.

Dark Matter and the Earliest Stars. Professor Sean Carroll discusses the cutting edge of science in cosmology and dark matter.

This article originally premiered on The Preposterous Universe.

So here’s something intriguing: an observational signature from the very first stars in the universe, which formed about 180 million years after the Big Bang (a little over one percent of the current age of the universe). This is exciting all by itself, and well worthy of our attention; getting data about the earliest generation of stars is notoriously difficult, and any morsel of information we can scrounge up is very helpful in putting together a picture of how the universe evolved from a relatively smooth plasma to the lumpy riot of stars and galaxies we see today. (Pop-level writeups at The Guardian and Science News, plus a helpful Twitter thread from Emma Chapman.)

But the intrigue gets kicked up a notch by an additional feature of the new results: the data imply that the cosmic gas surrounding these early stars is quite a bit cooler than we expected. What’s more, there’s a provocative explanation for why this might be the case: the gas might be cooled by interacting with dark matter. That’s quite a bit more speculative, of course, but sensible enough (and grounded in data) that it’s worth taking the possibility seriously.

[Update: skepticism has already been raised about the result. See this comment by Tim Brandt below.]

Illustration: NR Fuller, National Science Foundation

Let’s think about the stars first. We’re not seeing them directly; what we’re actually looking at is the cosmic microwave background (CMB) radiation, from about 380,000 years after the Big Bang. That radiation passes through the cosmic gas spread throughout the universe, occasionally getting absorbed. But when stars first start shining, they can very gently excite the gas around them (the 21cm hyperfine transition, for you experts), which in turn can affect the wavelength of radiation that gets absorbed. This shows up as a tiny distortion in the spectrum of the CMB itself. It’s that distortion which has now been observed, and the exact wavelength at which the distortion appears lets us work out the time at which those earliest stars began to shine.

This article is part of our Professor’s Perspective series—a place for experts to share their views and opinions on current events.

Two cool things about this. First, it’s a tour de force bit of observational cosmology by Judd Bowman and collaborators. Not that collecting the data is hard by modern standards (observing the CMB is something we’re good at), but that the researchers were able to account for all of the different ways such a distortion could be produced other than by the first stars. (Contamination by such “foregrounds” is a notoriously tricky problem in CMB observations…) Second, the experiment itself is totally charming. EDGES (Experiment to Detect Global EoR [Epoch of Reionization] Signature) is a small-table-sized gizmo surrounded by a metal mesh, plopped down in a desert in Western Australia. Three cheers for small science!

But we all knew that the first stars had to be somewhen, it was just a matter of when. The surprise is that the spectral distortion is larger than expected (at 3.8 sigma), a sign that the cosmic gas surrounding the stars is colder than expected (and can, therefore, absorb more radiation). Why would that be the case? It’s not easy to come up with explanations — there are plenty of ways to heat up gas, but it’s not easy to cool it down.

One bold hypothesis is put forward by Rennan Barkana in a companion paper. One way to cool down gas is to have it interact with something even colder. So maybe — cold dark matter? Barkana runs the numbers, given what we know about the density of dark matter, and finds that we could get the requisite amount of cooling with a relatively light dark-matter particle — less than five times the mass of the proton, well less than expected in typical models of Weakly Interacting Massive Particles. But not completely crazy. And not really constrained by current detection limits from underground experiments, which are generally sensitive to higher masses.

The tricky part is figuring out how the dark matter could interact with the ordinary matter to cool it down. Barkana doesn’t propose any specific model, but looks at interactions that depend sharply on the relative velocity of the particles, as . You might get that, for example, if there was an extremely light (perhaps massless) boson mediating the interaction between dark and ordinary matter. There are already tight limits on such things, but not enough to completely squelch the idea.

This is all extraordinarily speculative, but worth keeping an eye on. It will be full employment for particle-physics model-builders, who will be tasked with coming up with full theories that predict the right relic abundance of dark matter, have the right velocity-dependent force between dark and ordinary matter, and are compatible with all other known experimental constraints. It’s worth doing, as currently all of our information about dark matter comes from its gravitational interactions, not its interactions directly with ordinary matter. Any tiny hint of that is worth taking very seriously.

But of course, it might all go away. More work will be necessary to verify the observations and to work out the possible theoretical implications. Such is life at the cutting edge of science!

For more with Professor Carroll, check out Dark Matter, Dark Energy, The Dark Side of the Universe Wondrium!