A Search For the Theory of Everything

From the Lecture Series: The Theory of Everything — The Quest to Explain All Reality

By Don Lincoln. PhD, Fermi National Accelerator Laboratory (Fermilab)

The unifying theories of physics are among the greatest and most complex in all of science; their progression toward ever-grander insights will transform our understanding of the universe, and is nothing less than a search for the theory of everything.

hands holding atomic particle
(Image: PopTika/Shutterstock)

Dream No Small Dreams…

“Dream no small dreams for they have no power to move the hearts of men.”

Johann Wolfgang von Goethe’s quote is still powerful today, two centuries after he first wrote it down. It doesn’t matter whether you’re trying to broker an international peace treaty, cure a disease, or change a society, it’s not the incremental improvements that stir the blood; it’s the big ideas.

There is a class of scientists who live by these words. They keep thinking big and asking “why,” with each answer resulting in yet another question. They do that over and over again, with the hope that one day, there will be no more questions because we understand the reasons for everything. That is dreaming big!

server room 3d illustration with programming data design element
Our mastery of the atom made chemistry possible and also allowed us to build electronics and computers that can calculate faster than human imagination. (Image: whiteMocca/Shutterstock)

In science, humanity has had great success over the centuries. Isaac Newton’s amazing ideas about gravity were the first major scientific steps toward a theory of everything, ideas that we still use to guide our space probes to distant targets, like when the New Horizons spacecraft buzzed by Pluto. Our mastery of the atom made chemistry possible and furthermore, allowed us to build electronics and computers that can calculate faster than human imagination.

This is a transcript from the video series The Theory of Everything — The Quest to Explain All Reality. Watch it now, on Wondrium.

Each of these achievements is big in its own way, but they aren’t the biggest possible. While there’s no denying that these ideas originated from a grand dream, each represents merely a single facet of human knowledge. The ultimate goal of science is much bigger: Nothing less than an understanding of the fundamental rules of the universe itself. That’s a pretty ambitious goal and it depends crucially on the idea, which seems to be a fact, that all of the phenomena we see around us are interconnected and arise from even deeper causes.

The Standard Model

While nobody claims that science is done in their search, you can regard the standard model as the current best guess of a grand, unified theory. That’s why it’s so important to understand it and what it signifies. Whatever the final theory of everything looks like, the standard model will be part of it.

(Image: By MissMJ PBS NOVA [1], Fermilab, Office of Science/Public domain)

The key components of the standard model consist of:

  1. Quarks – found inside protons and neutrons in the center of atom;
  2. Leptons – the lightest of the subatomic particles, the most familiar one is the electron is found in the outskirts of every atom;
  3. Force-carrying particles,  sometimes called gauge bosons – responsible for transmitting three of the four known forces;
  4. Higgs Boson –  a particle whose existence was confirmed in 2012, the final missing piece to the standard model.

Over the last few decades, science has unified forces that historically have seemed distinct. While incredibly exciting, it leads to a bit of confusion. To let’s clear up a, let’s look at the five forces—the third item in the components of the standard model.

Learn more about the standard model of particle physics and the general theory of relativity.

The Five Forces

The five forces are as follows:

  1. Gravity, which keeps us firmly planted on the ground and guides the planets through their trajectories
  2. Electromagnetism, which includes electricity, magnetism, light and chemistry
  3. The strong nuclear force, which binds protons and neutrons together in the nucleus of atoms
  4. The weak force, which is responsible for forms of radioactivity
  5. The Higgs field, which gives mass to subatomic particles

But why then, in some cases, does science refer to only three or four forces? In the late 1960s, physicists showed that the weak force and electromagnetism were really two facets of a single thing, much in the same way that electricity and magnetism turned out to be two facets of something that we now call electromagnetism.

Therefore, scientists often talk about an electroweak theory, thus they might say that the forces are gravity, the electroweak force, the strong force, and the Higgs field. On the other hand, the Higgs field is inextricably tied with the electroweak force, possibly leading to classification in the electroweak umbrella. Under that way of thinking, there are but three: gravity, the strong force, and the electroweak complex.

Learn more about the discovery of the paradoxical world of light

The term “forces” may be a bit misleading. A better word for these would be interaction, because the word interaction means that some change is caused, like changing a particle’s identity without actually moving it. However, the word force is ingrained in the literature, so let’s stick with that word for continuity.

The sun
Strong force is used to explain why the sun burns at such high temperatures. (Image: PRIMA/Shutterstock)

The strong force is the strongest of the known forces. For example, it’s the force that explains why the sun burns so very hot. But it also has a weird behavior. It’s incredibly strong over very short ranges—say, the size of a proton. Once two particles are separated by a distance much larger than that, the strong force goes to zero. It’s a little like Velcro: If two pieces of Velcro are touching, they’re strongly bound together, but once they’re separated, they feel no attractive force at all. That particular facet plays a prominent role in understanding the large range observed in the mass of atoms.

Two particles experiencing the electromagnetic force will, in principle, feel a force between one another even if they are located on opposite sides of the universe.

The next strongest force is electromagnetism, which unifies electricity and magnetism into a single force. It’s much weaker than the strong force, but it has a different behavior as far as distance is concerned. Two particles experiencing the electromagnetic force will, in principle, feel a force between one another even if they are located on opposite sides of the universe. Granted, that force will be very small, but it won’t be mathematically zero because electromagnetism has an infinite range.

Because of the difference in how the two forces change with distance, you have to be very careful to specify distances when you compare electromagnetism to the strong force. Traditionally, a separation distance of about the size of a proton is chosen, which is a femtometer, or 10−15 meters. At that separation distance, the strong force is about 100 times stronger than electromagnetism. Of course, given the short range of the strong force and the infinite range of electromagnetism, if two particles are separated by just a meter, or even a millimeter, electromagnetism is actually much stronger..

The next weakest force is the weak force. The natural range of the weak force is about 1/1000 the size of a proton. However, if we ask how strong it is at the separation of a femtometer, it’s about 100,000 times weaker than the strong force. When we look at the weak force at its natural scale, we see that it’s actually similar to electromagnetism, and that was the beautiful insight that allowed for electroweak unification.

Learn more about how the electromagnetic and weak forces are aspects of the same force.

Next is the force of gravity. It has an infinite range like electromagnetism, but at the femtometer distance scale, gravity is approximately 1040 times weaker than the strong force. That’s a one over a one followed by 40 zeros. Approximately” because you get a different answer if you’re talking about the gravitational force between two protons, two electrons, or a proton and an electron, but the 1040 number communicates the right message: gravity is crazy weak. Gravity is so weak that science has yet to determine a way to study it on these imperceptibly-small scales. If we tried, the measurements would get swamped by the effects of the other forces and is the reason why gravity is not covered by the standard model.

The Higgs field is a bit different — it actually gives mass to particles, so it’s not a force in the way that the others are. Therefore, it isn’t discussed in quite the same way because we don’t know how its strength compares to the other forces. This is one of the times where the word interaction is more apt. Because of its interaction, the Higgs field turns massless particles into massive particles.

Higgs boson in large hadron collider.
(Image: Master_Andrii/Shutterstock)

The standard model is amazing, and only one of it’s four components were reviewed. With this standard model, science can explain basically everything we see, from why cells divide, to how stars burn, to why objects move in a particular manner, and so on. The hope is that one day, science will be able to unify the electroweak and strong forces into a single force called a grand unified theory.

Learn more about how terrestrial and celestial gravity are the same

Common Questions about the Theory of Everything

Q: Who created the Theory of Everything?

Stephen Hawking is one of the most famous physicists who tackled the problems of a Theory of Everything.

Q: How did Stephen Hawking die?

Stephen Hawking died from complications from Lou Gehrig’s disease.

Q: What exactly is the Theory of Everything?

The Theory of Everything is an attempt to unify mechanical physics with quantum physics and explain everything at once.

Q: What is dark matter?

Dark matter is an unknown substance. It is a type of energy or matter that forms, shapes, and somewhat controls the flow of the universe.

This article was updated on July 6, 2020

Keep Reading
How Einstein Challenged Newtonian Physics
Mysteries of the Universe: Is Dark Matter Lumpy Or Smooth?
The Theory of Everything: Two Major Unifying Theories of Physics